
J .  FZuid Mech. (1968), wol. 32, part 3,  pp.  489-528 

Printed in Great Britain 

489 

On standing internal gravity waves of finite amplitude 
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(Received 30 June 1967) 

Two-dimensional internal gravity waves in a rectangular container are examined 
theoretically and experimentally in (a) fluids which contain a single density 
discontinuity and (b)  fluids in which the density gradient is everywhere con- 
tinuous. The fractional density difference between the top and bottom of the 
fluid is small. 

Good agreement is found between the observed and calculated wave profiles 
in case (a). Unlike surface standing waves, which tend to sharpen at their crests 
as the wave amplitude increases, and which eventually break at  the crests when 
fluid accelerations become equal to that of gravity, internal wave crests are 
found to be flat and exhibit no instability. In  the case (a) breaking is found to 
occur a t  the nodes of the interfacial wave, where the current shear, generated 
by the wave itself, is greatest. For sufficiently large wave amplitudes, a dis- 
turbance with the form of a vortex but with direction of rotation reversing twice 
every cycle, grows at  the wave node and causes mixing. This instability is found 
to be followed by the generation of cross-waves, of which two different forms are 
observed. 

Several modes of oscillation can be generated and are observed in a fluid with 
constant density gradient. The wave frequencies and shape are well predicted 
by theory. The experiments failed to establish any limitation of the possible 
wave amplitudes. 

1. Introduction 
This investigation is concerned with two-dimensional standing internal gravity 

waves in an incompressible and inviscid, stably stratified fluid confined within 
a rectangular container with vertical walls. Standing internal waves are com- 
monly found in lakes (internal seiches) and have been studied by a number of 
people, notably Wedderburn & Williams (1911) and more recently Mortimer 
(1952). Oscillations interpreted as standing waves have been recorded in the 
Norwegian fjords (Pettersson 1909; Wedderburn 1909). The work reported here 
was primarily experimental and was done in the hope of gaining insight into the 
dynamics of breaking internal waves in controlled laboratory conditions. 

Before discussing standing waves in stratified fluids, we shall outline what is 
known theoretically and experimentally about standing surface gravity waves, 
so that comparisons may be borne in mind between these and the present 
findings. The theoretical study of standing waves really dates back to the paper 
by Stokes in 1847 in which the first-order linear solutions for both progressive 
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surface and interfacial waves (those at an interface between two fluids each of 
constant density) were found. By superimposing two equal linear wave trains 
travelling in opposite directions, a first-order solution for standing waves may 
be found. It was not until over a century later that the work of Stokes as applied 
to standing surface waves was developed further by Penney & Price (1952) to 
include waves of finite amplitude.? They extended the solution to fifth order for 
surface waves in deep water and produced a theory which predicted that the 
crest of the highest stable standing wave would enclose a right angle. The latter 
theory was discredited by Taylor (1953) although an experiment confirmed that 
in fact the prediction was good. Taylor generated standing waves by oscillating 
two flaps at  the ends of a tank of water, and by gradually increasing the ampli- 
tude of the flap oscillation and adjusting the frequencies was able to produce 
waves enclosing an angle a t  their crests which was very close to 90", after which 
instability occurred. This instability was examined, and it was found that, 
following a little wave breaking by splashing after the critical amplitude had 
been exceeded, cross-waves of half the flap frequency were set up in the water, 
and the two-dimensional motion could no longer be maintained. Tadjbakhsh & 
Keller (1960) further extended the theory to waves in shallow water by an ex- 
pression to third order. The equation of the wave profile to second order is 

7 = a s i n c r t c o ~ k x + ~ a 2 k [ T - T - ~ + T - ~ ( T ~ - 3 ) c o s 2 ~ t ~ c o s 2 k ~  (1.1) 

and the dispersion relation (to third order) 

a2k2 ( 32T4 
CT' = gkT 1--[2T6+3T4+12T'-9] 

where k is the wave-number, v the frequency, a is a constant proportional to the 
wave amplitude, h is the fluid depth and T is written for tanh Eh. 

It will be seen that the effect of the second-order terms is to distort the sinu- 
soidal wave-form so that the profile of these surface waves is always such that 
the crests are narrower and sharper than the troughs, no matter what the fluid 
depth, and this effect is indeed observed. Moreover, the dependence of frequency 
on the wave slope, ak in the dispersion relation changes sign. For values of depth 
to wavelength ratio, hlh, greater than 0.17, the frequency decreases as the wave 
amplitude increases, whilst for hlh < 0.17 the frequency increases. This re- 
markable prediction led Fultz (1962) to test the conclusions by experiment. 
Fultz found that the change in dependence does exist but at  a slightly lower 
value of h/h ( = 0*14), a result recently confirmed by Marcou (1965) in an indepen- 
dent experiment. 

The cross modes observed by Taylor were investigated by Lin & Howard 
(1960) both experimentally and theoretically. Their main conclusions were 
(a )  that the cross-mode is the result of an interaction between the wave-making 
flap and the finite amplitude wave, and that a critical flap amplitude must be 
exceeded before the cross-mode develops, ( b )  that the cross-mode has half the 
frequency of the wave flap; (c) certain critical frequencies are necessary to excite 

At about the same time a third order theory was published by Sekerzh-Zenkovich 
(1951). 
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the cross-mode; ( d )  there are certain tank width to length ratios which are most 
favourable for cross-wave development; ( e )  there is a phase angle of 90" between 
the wave flap and the cross-wave motion. 

An experimental study of the mean secondary currents in the plane of the 
wave motion was made by Ayrton (1908, 1936), but there is no reference to cur- 
rents at  right angles to this plane in the surface of the water. 

The ease with which Taylor caused breaking of the surface in the wave motion 
during his experiments suggested that an experimental study of interfacial 
standing waves and waves in other density profiles might lead to information 
about how internal waves break and, more generally, about the factors affecting 
the stability of fluid systems which are stably stratified. 

Little theoretical or experimental work on standing internal waves has been 
done. Two theoretical papers were published at about the same time in 1961, 
both on standing interfacial waves in deep fluids making an expansion similar 
to that of Penney & Price, one by Hunt and the other by Sekerzh-Zenkovich. 
That of Hunt extends the theory to  fourth order. It was found that, to third 
order, the equation of the interface is 

x (3 sin at - sin 3 d )  cos 3kx, (1.3) 
and the dispersion relation is 

where 0- is the frequency, k the wave-number, and p1,p2, are the densities of the 
upper and lower fluids respectively. 

Experiments on standing waves in a two fluid system were carried out by 
Schmidt (1908). His apparatus was a rectangular tank which, when filled, was 
gently rocked and then held stationary whilst the period of the resulting inter- 
facial wave was measured. The periods found were compared with those predicted 
theoretically from the linear Stokes theory, and it was found that the predicted 
periods were 6 yo smaller than the observed. Wedderburn & Williams (1911) 
also experimented with two and three layer models in tanks of various shapes 
following observations of temperature seiches in the Madusee. 

Schooley & Stewart (1963) found that standing internal waves were generated 
in their apparatus during an investigation of the flow caused by a self-propelled 
body in a stratified fluid, but no study of finite amplitude standing internal waves 
has yet been reported. 

The remainder of this paper is divided into two parts. In  the first ( $ 3 )  inter- 
facial waves are examined both theoretically (Hunt's analysis is extended to 
include finite fluid depths) and experimentally; in the second (0 3) waves in a 
continuously stratified fluid are examined theoretically, and experiments are 
described which were made in a fluid of constant density gradient. 
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2. Interfacial waves 
2.1. Theory 

We have extended Hunt’s theory to second order in the wave profile, and in the 
dispersion relation when the density difference is small, for the cases when the 
upper surface is free and when it is held fixed by a horizontal plane. The method 
of analysis follows closely that of Penney & Price (1952) and Hunt (1961) and 
there is no need to elaborate here. (For further details see Thorpe 1966.) The 
results are complicated and are quoted in full in appendix 1. We shall be here 
interested only in the case when the density difference between the two fluids is 
very small and the internal mode is excited, and then the results simplify to the 
case when the upper boundary is fixed; the equation of the interface to second 
order is 

U 2 k  

8T2,Ti 

where h,, h, are the upper and lower fluid depths respectively, and 

6 = asin d coskx + ___- (TI - T2) (TlT2- 3 cos 2 d )  cos akx, (2.1.1) 

= tanh kh, 
(i = 1 , q .  

The dispersion relation to third order is 

(3.1.3) 
If either kh, or kh, are large then these expressions reduce to 

6 = usinut coskx+ ( - l)( (u2k/8T:) (1 - T,) (q- 3 cos 2at)  cos 2kx, (2.1.3) 

where kh, remains small, and 

These equations reduce to Hunt’s when both fluids are deep. 

results. 

have 

Some observations are now made on the physical implications of the above 

(i) In  deep water when the density difference between the fluids is small, we 

a2k2 
32 

cos kx - __ (3  sin at -sin 3c.t) cos 3kx 

from Hunt’s result (1.3). 
The wave profile is thus symmetrical up and down; there is no cresting. The 

effect of finite amplitude is to flatten the profile at  the crest and trough. The inter- 
face becomes completely flat twice every cycle when t = nn/a (n = 0 , 1 ,  2, ...). 

This means that the energy becomes wholly kinetic at  these instants, which are 
the counterparts of the two instants in each cycle when the motion comes wholly 
to rest. 

(ii) When the upper fluid is deep (kh, S 1) and the density difference small, the 
wave profile is no longer symmetrical but crested upwards a t  times of maximum 
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displacement (t = ( 2 n +  1)77/2a) in (2 .1 .3)  and never becomes completely flat 
having a displacement 

ia2k(T2- 1 )  cos 2kx at times t = nn/a. 

(iii) When the lower fluid is deep and density difference small, the profile is 
as described in remark (ii) above, but inverted, and therefore crested downwards 
at times of maximum displacement. 

(iv) The dispersion relations (2.1.2),  (2 .1 .4)  indicate that when the fluids are 
both deep, the frequency decreases with increasing wave amplitude, whilst if 
one fluid is deep the trend of frequency decrease is reversed if tanh khi < 0.54, 
or if the depth to wavelength ratio is less than about 0.096. The behaviour of 
(T for varying values of the depths of fluids h,, 12, is indicated in figure 1. 

0 2  0.4 f 0 6  08 1.0 

054 tanh kh, 

FIGURE 1. The values of tanh khl and tanh kh, for which the variation of frequency with 
wave amplitude changes. In  region A the frequency of the standing interfacial waves 
decreases with increase of wave amplitude; in regions B the frequency increases with 
increase of wave amplitude. 

(v) When the density difference is small, the approximation made in deducing 
(2 .1 .1)  is valid if 

If one of the fluids is deep and the other shallow of depth h, this reduces to  
3a/8h2k, and hence the parameter which must be small is 3ah/16mh2 in contrast 
t o  that of 3ah2/32n2h3 applying to surface waves in Auid of depth h. 

2.2.  Experimental results 

It has been found possible to test experimentally some of the conclusions made 
above. The apparatus and experimental procedure will be described later, but 
comparison of the observations and predictions may conveniently be made here. 
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In  the experiments, the difference in density between the fluids used was small, 
being always less than 0.03 g/c.c., while the mean density was not far from 
1 g/c.c. Miscible fluids were used; surface tension effects were therefore neglected. 
The following conclusions were drawn. 

(i) In deep water (kh,, kh, both large) the wave profile appeared to be sinusoidal 
for small wave amplitudes, but became markedly more flattened at  the crests 

1 I I 1 I 
FIGURE 3. Standing wave profile from figure 2a. Points measured from 2a compared with 

a sine wave fitted at the crest and trough. The vertical scale is exaggerated. 

1 I I I I 1 I 

FIGURE 5. Standing wave profile from figure 4a,  shallow lower fluid. Points measured from 
4a compared with the second-order theoretical curve (full line) and a sine wave (dashed), 
both fitted to the experimental points at the wave crest and trough. The vertical scale is 
exaggerated and the horizontal line marks the level of the bottom of the tank. 

I I I I I 1 1 

FIGURE 7. Standing wave prose from 6a, shallow upper fluid. Points measured from 6a  
compared with the second-order theoretical curve (full line) and a sine wave (dashed), 
both fitted to the experimental points at crest and trough. The vertical scale is exaggerated 
and the horizontal line marks the level of the bottom of the tank. 
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and troughs as the amplitude was increased. Figures 2a, b, plate 1, show the 
appearance of the wave in free oscillation and figure 3 shows a comparison of 
theoretical and observed profiles. The points on the graph taken from the ob- 
served profiles were measured from a curve drawn from the projected and enlarged 
image of the photographs. The profile appeared to be flat once every half cycle, 
as predicted. 
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FIGURE 8. Response curves for interfacial waves in deep fluids with a density difference 
4-7 x 10-3g/c.c. The plunger frequency u is measured in radians per second, A7 is the total 
wave amplitude and h the wavelength. The dashed line is the calculated response curve 
and the arrow on the cr axis indicates the measured frequency of small free oscillations. 
The symbols represent different total plunger amplitudes: x , 0.35 cm; 0, 0.60 em; 
A, 0.75 cm; v, 1.05 cm; 0, 1-40 om; 0, 1.60 cm. 

(ii) When the upper fluid was deep and the lower shallow, the wave profile 
appeared to be sinusoidal for smalI amplitudes, but crested upwards when the 
wave amplitude was sufficiently increased, as shown in figures 4a,  b,  c, plate 2,  
and never became flat. Figure 4 b  shows the interface with the second harmonic, 
as predicted, at  a time approximately half way between the times when the 
displacement was a maximum. Figure 5 is a comparison of the theoretically 
predicted profile, and that observed in figure 4a. 

(iii) When the lower fluid was deep and the upper shallow, the wave profile 
became downward crested at sufficiently large amplitudes (figures 6a, b, c, 
plate 3, figure 7). The interface was again disturbed by the predicted second 
harmonic (figure 6 b ) ,  the amplitude of which is in satisfactory agreement with 
predictions. 

(iv) For reasons which are described below, it was not easy to obtain accurate 
response curves (showing the amplitude of the forced wave for different wave 
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generator frequencies) and thus the theoretical conclusion (iv) could not be well 
tested. Response curves which were obtained are shown, figures 8, 9. Figure 8 
indicates that in deep water the frequency decreases with increase in wave ampli- 
tude, as predicted. The theoretical increase in frequency when the bottom layer 
was sufficiently small, was not observed at depth to wave-length ratio for the 

0.06 

005 

0.04 

< 0.03 
a" 

bottom layer of 0.076, as indicated by figure 9, but the general shapes of the 
response curves are greatly altered from those in deep water (figure 8). Parti- 
cularly noticeable is the absence of the steepening on the low frequency side of 
the peak, which suggests that some alteration in frequency response had taken 
place. The changes are very similar to those found by Fultz (1962) in his study 
of surface waves as the fluid depth to wavelength ratio approached the critical 
value 0.14. 

2.3. The experiments 

The apparatus used in this experiment is shown in figure 10. The apparatus was 
originally designed for the investigation of standing internal waves in a uniformly 
stratified fluid, but was found quite suitable for these experiments. 
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The apparatus consisted of a rectangular tank ( A )  of depth 30in., width 
14 in. and breadth 8 in., fitted with transparent Perspex walls, (B) ,  a t  front and 
back. The side walls were fitted with plungers (C) of height 8 in. and the same 
breadth as the tank, and the bottom of these plungers was at  a distance of 8 in. 
above the bottom of the tank. Each plunger was moved in and out of the tank in 

Pulley to 
gear-box 
and motor I 

To plunger 

F I G ~ E  10. The apparatus; (a)  side view, ( b )  detail in plan of the plunger drive. 

simple harmonic motion by the motion of a ball race (G) between parallel rods 
connected to the plungers. Each ball race was fixed in a diametrical slot of a 
circular disk (E)  which was rotated at constant angular velocity by means of 
bevelled gears (a) and pulley from a motorized variable speed transmission 
unit incorporating a further 20-1 gear reduction box. The position of the ball 
races (G) in the slots of the disks ( D )  could be varied when the system was a t  rest, 
and as a result, the plunger amplitude varied between zero and 5 cm, although in 
practice 1.6 cm was never exceeded. The plungers could oscillate in or 180" 
out of phase (the motions being shown in phase by the direction arrows in figure 
10). The variation of plunger frequency available was from zero to 0.23 c/s, 
although the drive was not very stable for frequencies below 0.06 c/s, and in the 
experiments the variation used was from 0-065 to 0.23 c/s. The mean position 
of the plungers was adjusted so that, when in this position, the face of each 
plunger was in the plane of the side wall of the tank. A counter was included in 
the apparatus so that the number of oscillations of the plungers was automati- 
cally recorded. 

32 Fluid Mech. 32 
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It had been hoped that it might be possible to seal the area between the sides 
of the plungers and the tank so that fluid would not escape when the tank was 
filled, but although several methods were used, it was not found possible to 
obtain a sufficiently watertight seal. It was therefore necessary to resort to some 
other method of containing the fluid, and eventually we had the idea of holding 
the fluid entirely in a rectangular ‘bag’ made of polythene, which was itself 
supported by the tank. Polythene had two properties which made it suitable. 
It was pliable so that the plunger motion was transmitted to the fluid in the 
‘bag ’, and it was translucent so that the fluid motion within could be clearly 
observed and photographed. The ‘bags ’ were made using a heat sealing machine 
at the Low Temperature Research Station in Cambridge. A large number of 
‘bags ’ were eventually made because leaks developed, particularly at  the corners 
which were difficult to seal, usually after the ‘bag’ had been used two or three 
times. The lines which occur in some of the photographs are the result of small 
wrinkles in the polythene when it was pressed by the pressure of the fluid against 
the Perspex tank walls. These wrinkles were difficult to remove without dis- 
turbing the fluid. 

The fluids used in all except one of the experiments, were water and brine, one 
or other being coloured by a little dissolved dye (gentian violet or potassium 
permanganate) to make the interface visible. When filling, the tank was first 
filled to a predetermined level with water, and then the heavier brine slowly 
added from a tank through a vertical tube to which was fixed a horizontal plate 
which rested on small supports on the bottom of the tank; the bottom of the 
tank deflected the flow horizontally and the plate reduced mixing. The filling 
tube was made of glass and is visible in some of the photographs. It was held 
against a wall, usually in the appropriate position of the wave crest, where hori- 
zontal fluid motions are small, and did not appear to disturb the interface in its 
vicinity in any of the experiments. The amount of dynamic mixing occasioned 
by this method of filling was small, and sharp interfaces were observed between 
the dye and the clear fluid. The amount of diffusive mixing was probably larger. 
The diffusion of salt from the brine across the interface by molecular processes 
during the time of filling would result in a layer of gradually changing density 
between the two fluids with a scale of thickness of 2(KsT)4 where Ks is the 
molecular diffusivity of salt (1.4 x em2 s-l at  20°C) and T is the time of 
filling, usually between 1 and 2 h. Thus the thickness of the interface might be 
expected to be of the order of 0.6 cm. The effect of this on the wave frequency is 
discussed later. The dynamic mixing of the interface is indicated by the appear- 
ance and motion of the upper surface of the dyed region. Diffusive mixing of the 
salt at  the interface is not so indicated, and in this case the top of the dyed region 
coincides with the mean density level, if the diffusivity of the dye is much less 
than that of salt.? In  the mixing processes by breaking described later, the motion 
of the upper surface of the dye will represent the motion of the mean interface. 

The undisturbed interface was usually arranged to lie level with the bottom of 

-f No measurements of the molecular diffusivities in water of the dyes used have been 
found in the literature. Steam, Irish & Eyring (1940) quote the range of diffusivities of 
various dyes as 0-17 x to 0.58 x em2s-l, somewhat less than that of salt. 
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the plungers so that the mean level of the interface in the wave motion did not 
move vertically even when the plungers moved in opposition (180" out of phase).? 
A false bottom was added to the tank when studying interfacial waves with a 
shallow lower fluid. 

The densities of the two fluids were measured in two ways, the first by means 
of a salinometer calibrated for density and incorporating a temperature correction 
and the second by means of a density bottle. The results obtained by the two 
methods were substantially in agreement. 

The frequency of the plungers was found by timing oscillations with a stop 
watch. The wave amplitudes were measured directly against a vertical rule, the 
motions being so slow that sufficient time was available to measure, after some 
practice, the distance between crest and trough to within a millimeter. 

Experiments were first tried with one plunger working alone, when both 
fluids were deep and the plunger amplitude was quite large, 1.6 cm. As the fre- 
quency of the plunger was gradually increased, successive forms of the inter- 
facial wave displacement were observed as the wavelength of the disturbance 
decreased through the values 2 W / n  (n = 1,2,3, . . .), where W is the distance 
between the side walls of the tank, and n is an integer which we shall refer to as 
the modal number, to define the shape of the waves observed. The amplitudes and 
phases of the oscillation were much as those found by Taylor (1953) in the study 
of surface standing waves. When the plunger motion was first started at  some 
low frequency, the amplitude of the wave motion at the interface gradually 
increased, reached a maximum, and then oscillated slightly before reaching a 
constant value with the appearance of the mode n = 1. When the frequency was 
now increased slightly, the amplitude of the wave increased. This increase of 
amplitude with the frequency continued until the frequency reached a critical 
response value, when the phase of the wave relative to the plunger changed by 
180". This phase change took a number of oscillations to complete, and for a 
time the wave motion remained 90" out of phase with the plungers. This change 
of phase was also accompanied by an increase in amplitude. If the plunger motion 
was stopped at this stage the wave motion continued for some time before dying 
out. Further increases in frequency caused a decrease in wave amplitude and a 
gradual change in form of the profile until it resembled the mode n = 2 with one 
complete wave length across the tank. Further increase in frequency then caused 
in succession, increase in amplitude until a change of phase of 180", decrease, 
gradual change to the profile of mode n = 3, and then again increase in ampli- 
tude, the stages being repeated. It was found possible to distinguish the mode 
n = 4 and with care even higher modes might have been obtained. 

When both plungers were used moving in opposition it was not found possible 
to generate the odd modes; only the odd modes could be generated when the 
plungers moved in phase. A small vertical motion of the free surface was occa- 

t It was found impractical to observe and generate waves in this way when the upper 
fluid was shallow, because very large plunger amplitudes were necessary to excite the 
waves. When experimenting with a shallow upper fluid the undisturbed interface was 
arranged to lie level with the top of the plungers, resulting in a mean displacement of the 
interface which had to be taken into account when the plungers moved in opposition. 

32-2 
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sioned when the plungers moved in opposition, but this did not seem to affect 
the motion or the profile of the interface. No wave form was ever visible on the 
free surface, and, so far as could be seen it remained undisturbed in spite of the 
sometimes violent internal motions at the interface. The effects on the wave 
profiles of frequency increase with two plungers was substantially as described 
for the single plunger but with the relevant modes absent. 

FIGURE 11. Sketch showing the relationship between the phases of waves and plungers. 
( A )  plunger frequency greater than the natural wave frequency. (B)  plunger frequency 
less than the natural wave frequency. 

The majority of experiments were carried out with the two plungers working 
in opposition using the second mode. The phases of the waves relative the the 
plungers in the experiments when both fluids were deep or the lower shallow, 
are shown in figure 11. (The phases when the upper fluid was shallow and the 
interface level with the top of the plungers, were 180" different from those shown 
in figure 11.) Figures 2, 4 and 6 mentioned in 52.2 were obtained by oscillating 
the plungers a few times near the critical frequencies already determined by 
earlier experiment, then stopping the plunger motion and photographing after 
the generated wave had oscillated four or five times. (In shallow water damping 
was large, and the photographs were taken with the plungers oscillating at the 
critical frequency.) The waves so created were gradually damped. 

For the mode n = 2 in deep water with a density difference between the fluids 
of 0.01 g/c.c. and a starting total amplitude of 2 cm, the waves could be dis- 
tinguished for 4 or 5 min, i.e. for about 30 oscillations, before they were damped 
out. The waves could usually be detected until their amplitude was about 
0.1 cm and these observations led to an estimated damping coefficient, 
q + 0.01 s-l.? The damping was found to be greatly increased when the depth 
of one of the fluids was small compared to the wavelength. It also increased as 
the modal number increased, or as the wavelength decreased. These findings are 

The time dependence of all first-order variables is sin (at + 6) e-qt where 6 is a constant. 
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in agreement with the predictions of Harrison (1908). A discussion of the effects 
of viscosity is included in appendix 2. 

When working with deep fluids of varying density differences, it was discovered 
that the maximum wave amplitude which might be obtained at  a fixed plunger 
amplitude increased as the density difference between the fluids increased. 
This is clearly shown in the response curves for fixed plunger amplitude, figure 12. 
The curves are drawn for wave oscillation in mode n = 2 at a total plunger 
amplitude of 0.35 cm and varying density differences. This effect is referred to 
in appendix 2. 

0- 

FIGURE 12. Response curves for different density differences and constant total plunger 
amplitude 0.35 em. Total wave amplitude, AT, divided by wavelength, h, is plotted against 
plunger frequency rr measured in radians per second. The curves from left to right are for 
density differences of 4.7, 10.0, 15.0 and 22.8, g/c.c. respectively. 

Wave breaking ; observations 

When the two plungers were used and both fluids were deep, it was found that a t  a 
sufficiently large plunger amplitude near the critical frequencies, irregularities 
occurred in the wave profile near the modes. The form of the irregularity may be 
seen in figure 13, plates 4 and 5.  The appearance of the irregularity was similar 
to that which might be envisaged by a vortex of varying sense lying in the inter- 
face perpendicular to the plane of motion. As the crest of the wave rose up, the 
interface near the mode sheared into the position shown in figure 14 (as if a 
vortex of right-handed sense had been applied at  the node a t  the right of the 
crest, or a left-handed vortex at  the left node). As the crest collapsed, mixing 
occurred in the region of the nodes, the interface became almost flat and then 
sheared in the opposite sense in the trough. Careful examination revealed that 
the wave profile became blurred at  the nodes at  smaller amplitudes than those a t  
which the overturning described above took place, and the effect may be seen 
in figure 2. 

The events leading up to and following the irregularities were as follows. We 
suppose that the plunger amplitude and frequency were selected as being those 
which were known from past experience to cause the full sequence of events, and 
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that the plungers were started from rest. (i) The wave amplitude increased 
gradually; the profile was symmetrical and sharply defined. (ii) At wave slopesf- 
of about 0.2 blurred regions became apparent near the wave nodes; the remainder 
of the profile remained sharp. (iii) At wave slopes of about 0.4, the irregularities 
at  the nodes as described above were observed. The interface became gradually 
less distinct as a result of the mixing in the region of the node. The profile became 
more grotesque, almost resembling a mushroom shape at  times. Qualitatively 

FIGURE 14. The irregularities which occur in the standing wave profile and the suggestion 
of vortex motion indicated by the arrows. 

the same features were observed when the upper, rather than the lower fluid, 
was coloured. (iv) The two-dimensional motion broke down and cross-waves, 
with the same frequency and in phase with the plungers occurred. These cross- 
waves were observed by following the motion of the interface against the side 
walls of the tank. The displacement could be clearly seen to be a half wavelength. 
The motions became quite violent at  times and streamers of the lower fluid were 
thrown up into the upper near the walls where the vertical motion was affected 
by horizontal motion of the plungers. This resulted in mixing. Two different 
forms of the cross-waves were observed, one in which the interface was twisted, 
the other in which the whole moved in phase in the cross mode, the former being 
most usually found. The latter was found to change into a twisting mode on 
occasions, but the reverse was not observed. The forms of the cross-modes are 
shown in figures 15 and 16. It is worth comparing these observations of inter- 
facial cross-modes with the surface cross-modes observed by Taylor, and Lin & 
Howardf, described in the introduction. The phase and frequency differ in the 
two cases. The occurrence of a cross-mode is not altogether unexpected, since the 

t Wave slope is here taken as 277a/h, where a is half the total wave amplitude, and h the 
wavelength. 

$ The theoretical work of Lin & Howard cannot be extended directly to  this model, 
since an essential part of their analysis was based on wave generation by flaps rather than 
by plungers. 
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natural frequency of a transverse mode of wavelength twice the breadth, B, of 
the tank, is (~g/B)g[(p , -p l ) / (p l+p, ) lg ,  while the natural frequency of the ordin- 
ary wave of mode n = 2 is (2ng/w)*[(p2 -pI)/(pl +p,)]&, where W is the tank width. 
The ratio of these frequencies, (w/2B)* is 0.936 in the experiment, and this is 
not far from unity. 

The times in which the motions persisted in each of the first three stages before 
transition to the next depended on whether or not the plunger amplitude was 
sufficient to allow the motion to develop through all the stages, but typically the 
motion would remain in stage (i) for about 5 oscillations, stage (ii) for 12 oscilla- 
tions, and stage (iii) for 12 oscillations before stage (iv) was reached. No further 
development after stage (iv) was observed. 

FIGURE 15 FIGURE 16 

FIGURE 15. Cross-waves in the observed twisting form. The continuous lines represent the 
wave profile, seen in perspective, when the cross waves are present, superimposed on the 
(dashed) primary, n = 2, wave. 

FIGURE 16. Cross-waves in the in-phase motion. 

If the natural frequency of the wave motion was observed before and after 
the events described above, by exciting the wave and then timing 20 free oscilla- 
tions, it was found that the frequency was reduced. For example, on one occasion, 
when first excited, the wave frequency was 0.83 rad/sec. After 20 oscillations 
of the plunger in which the wave reached stage (ii) but not stage (iii), the fre- 
quency was 0.812 rad/s. After a longer run in which stages (iii) and (iv) were 
reached and violent motions and mixing occurred, the frequency was found to 
be 0.76 rad/s. On a few occasions it was found that the result of mixing a t  stage 
(iii) was sufficient to change the natural frequency so much that the plunger 
frequency was no longer close to the natural, and the wave response was therefore 
less, resulting in reduction in wave amplitude before the cross-mode developed. 

In  an attempt to observe more clearly the form of the irregularities at the 
interface, an experiment was made with a layer of dyed fluid of thickness 0.7 cm 
and density 1-0037 g/c.c. lying between two deep uncoloured layers of densities 
0.9978 and 1-0077 g/c.c. The period of free oscillation in mode n = 2 was found 
by oscillating the plungers a few times and timing the resultant oscillation in the 
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FIGURE 18. Diagrams of stream patterns observed (from above) in a layer of dye lying at 
the interface between two fluids of different densities when a standing wave is generated. 
AB is the line of the central antinode, CC and DD the position of the nodes. The circle 
near A is the position of the Bling tube. The development of a cross mode causes the 
change in t.he patterns in diagrams ( c )  to (9) .  

FIGURE 19. Diagrams of the streaks of clear fluid in a dyed layer viewed horizontally. 
Three positions of the layer are shown. The short lines a t  the nodes, C and D, and the 
antinode, B, show the position of the streaks and correspond to those of figure 18b.  
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fluid, and the plunger frequency was then set close to this frequency of free oscilla- 
tions, The total wave amplitude grew to 5.2 cm. The thickness of the dyed layer 
was seen to increase slightly near the nodes, and to assume the shape shown in 
figure 17, plate 6, at the times of maximum displacement, a shape which resembled 
that of the irregularities of the two fluid system. In addition to this irregular 
shape of the profile, streaks of less densely coloured fluid in the vicinity of the 
wave crest and node were observed. There followed, after a few oscillations, the 
growth of a cross-mode of the in-phase kind described above, which changed into 
a twisting cross-mode after 15 or 20 further wave periods. 

The experiment was repeated with a coloured layer of density 1.0034 g1c.c. 
and thickness 0.5 em separating deep uncoloured layers of densities 0.9982 
and 1.0037 g/c.c. During filling it was noticed that streaks of relatively less 
coloured fluid existed in the dyed layer, when seen from above, and it seemed 
that they were associated with currents flowing in the lower fluid. The patterns 
disappeared some time after filling stopped. When the plungers were started 
the wave amplitude grew, and after seven oscillations had grown to 4.5 cm. At 
this time a streak pattern of relatively less coloured fluid in the dyed layer was 
noticed when viewed from above or below. The pattern is shown in figure 18 (a). 
The currents associated with the streaks appeared to be away from the wall at  the 
antinodes and towards the nodes in the body of the fluid. Arrows indicating the 
motions have been drawn in figure 18(a). The layer of dyed fluid oscillated up 
and down with the wave motion, but so far as could be seen, the growth and 
motions of the streaks continued in the same direction throughout the wave 
motion and the pattern did not seem to change its form substantially during one 
oscillation. No wave breaking similar to that described in stage 3 was observed. 
By the 38th oscillation of the plungers, the streak pattern in the dye had developed 
into that shown in figure 18(b). The appearance of the streaks when viewed 
horizontally is shown in figure 19, and they resembled the streaks seen in the 
preceding experiment. By the 88th oscillation the pattern was much as shown in 
figure 18 (b ) ,  but a small gap had developed along the line AB separating the dyed 
layer into two parts. The pattern did not change after this and appeared to be 
steady although the experiment was continued up to 160 oscillations. Photo- 
graphs of the streaks, taken from an angle below the interface, at the 70th and 
131st oscillation are shown (figure 20, plate 7) .  

The experiment was again repeated with a dyed layer of density 1.0138 g1c.c. 
and thickness 0-4 cm between deep uncoloured layers of densities 0.9978 and 
1.0142 g/c.c. The effects were at  first qualitative as in the last experiment, and 
again no breaking as describedin stage (iii) occurred. However, the streak pattern 
developed differently. The main features are shown in figure 18 ( c )  to (9) .  It was 
found that by the time the pattern had changed into the configuration shown in 
figure 18 (g), a twisted cross-mode had developed with resulting maximum wave 
amplitude a t  points E and F .  

We believe that the streaks are the manifestation of secondary currents at  the 
interface generated in the boundary layers at  the vertical walls of the tank, 
similar to those described by Rayleigh (1896, $9 260 and 352) in the case of stand- 
ing sound waves, which produce the piles of dust found in the Kundt’s dust-tube 
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experiment. Similar effects occur in surface standing waves.? A search was made 
for mean vertical currents generated by small interfacial wave motions by adding 
aluminium powder to the water and brine and following the motion of the 
particles, but no evidence of such secondary currents was found. It would perhaps 
be difficult to identify such mean currents in this way because the time scale of 
the motion would be large. 

In  the experiments in which one of the fluids was shallow, the irregularities of 
stage (iii) were not observed and a direct transition from stage (ii) to stage (iv) 
followed. 

An attempt was made to identify more closely the mechanism leading to the 
instabilities which produce mixing, by using two immiscible fluids. The fluids 
used were water and a mixture of carbon tetrachloride and kerosine, the mixture 
being of density 0.0084 g1c.c. less than that of water. The first observation made 
when the tank had been filled was that the meniscus at  the edge of the interface 
was very large. (The effect of capillary forces is given by the number, 
T/g(p2 -p l )  L2, see, for example, Rosenhead (1963, p. 32) where L is a length scale. 
The size of the meniscus which might be expected at  the interface is therefore 
[Tlp2/T(p,  -p,)]* times the meniscus at  the water surface, where TI is the surface 
tension at  the interface, T the air-water surface tension. The surface tension at 
the interface was estimated at 44 dyneslcm, by measurement of the forces 
required to lift a light plastic ring off the fluid surfaces, and this would imply a 
meniscus at  the interface about eight times as large as that at an air-water 
boundary.) Waves of mode n = 2 were excited by oscillating the plungers and 
although there was sometimes evidence at  the interface of the presence of small 
waves of much smaller wavelengths than the width of the tank, these waves were 
not positively identified with the position of the primary wave node. It was 
noticed that the waves produced were smaller in amplitude than the waves 
observed before between brine and water with the same density difference 
produced in similar circumstances, No evidence of breaking was seen. The ex- 
periment was discontinued when it was found that leaks had developed in the 
apparatus (probably as a result of contact with the mixture) and not repeated 
because the observations made were not encouraging, mainly because of the 
large meniscus effect. (Unfortunately the restrictions on the frequency range 
available limited our experiments to very small density differences, and thus to a 
large meniscus.) 5: 

From what has been observed about the mixing and its effects on the natural 
frequency of the waves, it is clearly impossible to obtain response curves for a 
two fluid system by simply increasing the frequency by stages through and beyond 

t It is possible to detect these currents in surface gravity waves produced in a bucket. 
A plastic bucket is suitable since the waves may easily be started by slightly vibrating 
opposite sides of the bucket by hand at a frequency equal to the natural frequency of the 
waves. If the surface is marked by aluminium powder (soap suds or pepper are equally 
efficient), motion of the water may be seen in the boundary layers away from the nodes 
towards the antinodes, and away from the wall at the antinodes themselves. Similar 
currents are generated in a rectangular container containing water, when it is gently 
rocked. 

2 For footnote see opposite page. 
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the critical frequency and measuring the resulting wave amplitudes, for as soon 
as the amplitude became large enough for stage (ii) to occur, mixing starts and 
the natural frequency of the waves changes. The magnitude of the changes in 
frequency occasioned by the mixing are not negligible, as is shown in the example 
quoted. 

Early estimates of the natural frequency of the waves were based on the res- 
ponse curves obtained in the way described above and were found to be 6 or 
7 yo smaller than those estimated (as found by Schmidt). However, when great 
care was taken to excite a wave of amplitude not sufficient to reach stage (ii), 
and also to make the experiment and filling as quickly as possible to reduce 
molecular diffusion, much closer agreement was found between the observed and 
theoretical frequencies. For the mode n = 1 when both fluids were 19.1 cm deep 
and the density difference was 0.0204 g1c.c. the observed frequencies from two 
experiments found by timing 10 oscillations, were 0-8837, 0.8837, 0.8812, 
0.8863, 0.8837, 0.8876, the mean 0.8843 rad/s, comparing with 0.8861 found 
theoretically. The frequencies were not compared for modes and density 
differences other than those shown in the response curves. 

The response curves shown in figure 8, 9 and 12 must be regarded as only 
approximations to the exact curves which might be obtained for two fluids with ;t 
sharp interface between them. Each curve was obtained in two parts and in two 
separate experiments, the first by approaching the natural wave frequency 
from above and the second by approaching from below, so as to reduce the 
amount of mixing which had taken place in reaching any wave response ampli- 
tude a t  a given frequency. Moreover, the selected plunger frequencies at which 
the wave amplitudes were measured were few, and the times taken in obtaining 
the frequencies and the corresponding amplitudes were made as short as possible, 
while allowing the wave amplitude to develop fully and the frequency to be 
carefully measured, again so as to reduce the amount of mixing. (In fact the 
wave amplitude was measured after about 12 oscillations at each frequency.) 
The measurements of frequency were correct to about 0.3 yo. In spite of these 
arrangements, there was evidence that some mixing had occurred, particularly 
when the wave amplitudes became large, and the response curves are substan- 
tially removed from the theoretical. 

2.4. Wave breaking: discussion 

While it has not been found possible to construct a complete stability analysis 
for the standing interfacial wave, the general dynamics of the wave breaking 

$ Dr Brooke Benjamin has kindly drawn my attention to a dissertation by Carstens 
(1964) in which this experiment with immiscible fluids is described. The observations of 
short wave-length disturbances (which ultimately break and eject globes of the upper 
fluid into the lower, and globes of lower fluid into the upper) a t  the nodes of the standing 
wave are particularly interesting. The stability problem in that experiment differs from 
the present problem in that surface tension provides a stabilizing force a t  the interface 
and a threshold of instability (a minimum shear for which a disturbance may be ampli- 
fied) may be found. Carstens also observed the existence of the secondary currents at  the 
interface. 
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seems to be quite clear. It is found that the wave crests and troughs, in contrast 
to the surface standing wave crests, are flat, indeed markedly so, and no in- 
stability appears to be associated with this region. As noted by Phillips (1966, 
p. 186) and others, it  is only when local accelerations in the wave motion become 
comparable with the acceleration due to gravity (and not the reduced gravity) 
that the Rsyleigh-Taylor type of instabilities may occur; and while such 
accelerations are possible in the surface standing wave at  its crest (and do lead 
to breaking as found by Taylor), they are not likely to be found in internal 
gravity waves. To first order, the fluid acceleration reaches a maximum value 
a t  the wave crest of ur2, which is equal to ukg(p, -pl)/(pl  + p 2 )  when both fluids 
are deep. Even for large wave slopes, uk, this acceleration is generally much less 
than g in naturally occurring phenomena, and, in particular, is always much less 
in our experiments. Another mechanism must therefore be present to explain 
the observed instability at the node of the interfacial wave, the part of the wave 
where, significantly, the local shear at the interface resulting from the wave 
motion itself, is greatest. It is suggested that this instability is a shear instability, 
although not in its most simple form, for the local shears at  the interface are 
periodic in both space and time and the interface itself does not remain hori- 
zontal. A mark of this complexity is the observation that a single roll (or ‘vortex ’) 
is generated at  the wave node, and not a small group of waves or rolls as might be 
expected if some locally uniform conditions were present at the wave node. 
It is relevant to mention that in the case of the two-fluid Rayleigh-Taylor 
instability, which in many ways resembles the situation under discussion here, 
Daly (1967) has recently established the existence of a single ‘vortex’ or roll at 
the interface in the finite amplitude motion for sufficiently small differences in 
density between the two fluids and has ascribed the generation of the roll to the 
Kelvin-Helmhotz instability. 

While the roll which develops in our experiments is very similar to that found 
by Daly, in practice it is impossible to establish an interface between two mis- 
cible fluids in which the density gradient is discontinuous in a mathematical 
sense. In fact it  is possible to estimate a Richardson number, Ri associated with 
the maximum local shear at  the interface at the onset of the observed wave 
irregularities, based on the observed wave slopes, wavelengths and the thickness 
of the interface, on the assumption that the fluid velocities are just those pre- 
dicted by the theory for two deep fluids. When breaking (stage ii) is first observed, 
the value of Ri is estimated to be about 0.36; stage (iii) is reached at  a Richardson 
number of about 0.01. The theoretical analysis of the situation is not complete. 

Yet to be explained completely is the observed ‘blurring’ of the interface 
(stage ii) which precedes ‘roll-up’ (stage iii). It was first thought that this might 
be the effect of secondary currents associated with the primary wave motion 
carrying fluid of intermediate density to the region of the wave node, but more 
recent observations of instability in heterogeneous shear flow in a slightly tilted 
tube? suggest that the ‘blurring’ is associated with the development of the 

t An account of these experiments was presented at the International Conference on 
Stratified Fluids a t  Ann Arbor in April 1967, and further results will be published in a 
later paper. 
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instability itself and not with the primary wave motion. It is expected that 
better estimates of the Richardson number a t  which instability is first observed 
may be deduced from these further experiments. 

3. Standing internal waves in a continuously stratified fluid 
3.1. General theory 

We wish to find a periodic standing wave solution of the equations governing the 
two-dimensional motion between two vertical walls of an inviscid, incompressible 
fluid, which is continuously and stably stratified. The lower boundary of the 
fluid is supposed to be horizontal and rigid; the upper boundary will also be 
fixed horizontally although in general an extension to include a free upper 
boundary may be possible. 

The method used will be seen to be akin to that already applied to progressive 
internal waves (Thorpe 1968), but is really an extension of the method of soh- 
tion applied to surface waves by Penney & Price. Implicit in our assumptions is 
that certain series in powers of wave amplitude do converge for sufficiently small 
amplitudes. The solution of standing wave problems is easier than that of prob- 
lems involving progressive waves since more boundary conditions (those a t  
vertical walls) are specified, and there is no difficulty in matching given up- 
stream conditions or in defining a perturbation about a given state. We shall 
consider first the genera1 problem, that of waves in a fluid which, in the absence 
of waves, has a density Po (2), where axes &,2, are taken horizontally and vertically 
respectively and (*) represents a dimensional quantity. If q(&,5,, t^ )  is the dis- 
placement of a particle of density Po (5,) from its original position 5,, then since 
there is no exchange of fluid across the vertical walls or horizontal bottom of the 
containing boundary, by continuity the fluid initially lying below a line of 
particles q(2,5,,%) remains below, and hence the mean value of fl with respect 
to 2 is zero. This condition will be used to specify certain functions in the later 
analysis. 

The fluid is incompressible and we may therefore define a stream function 
$(2, 9, t^ )  such that horizontal and vertical velocity components (a, a) of fluid 
velocity are 

a = a $ p ,  a = -a$p&. (3.1.1) 

We shall find it convenient to make the Boussinesq approximation. By doing 
so we may restrict the application of the analysis to certain scales of motion, 
just as was found for progressive waves. The validity of the Boussinesq approxi- 
mation has been examined in some detail in the progressive wave theory (Thorpe 
1968) and the restrictions of the application of this analysis are exactly as found 
there. Broadly the restriction is to medium scales of motion and theory is not 
applicable to long-standing waves in the larger lakes. 

The vorticity equation and the equation of continuity become 

(3.1.2) 
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where b(2, 8,z) is the fluid density in the wave motion, and J is the Jacobian. 
We shall take the fixed boundaries at  2 = 0, I? where 2% = @/a2 = 0, and a t  
x = O,l?  where 3 = -@/a2 = 0. The case when J? is infinite may be included. 

We now non-dimensionalize the equations using the width, W ,  the density, 
bO(O), and the acceleration due to gravity, 8. Then (3.1.3) and (4.1.3) become 

A 

A 

a aP 
at - Vz@ + J(V2@,  @) = - ax (3.1.4) 

and (apjat) + J ( P ,  $) = 0, (3.1.5) 

and the boundary conditions are 

a@/az = 0 at x = O , T ,  (3.1.6) 

and a@/ax 0 at z = 0 , 7 ~ / r ,  (3.1.7) 
h A 

where x = Tqw) x = nqw, t = (@n/J?)t", 

+ = (m@3)~$, P = mom J(P, = a(p, w x ,  21, 

and r = @/I?. The non-dimensional density of the disturbed fluid is 

( 2 )  = Po (Who (0). 

To solve these equations subject to the given boundary conditions and the 
condition of continuity described above, we make certain further assumptions. 
We suppose that the stream function is of the form 

(3.1.8) 

where n and p are positive integers (this satisfies (3.1.7)) and it follows from 
(3.1.4) and (3.1.5) that the density must be of the form 

m 

(This assumption is similar to that of Penney & Price although here the dependence 
of II., on z does not follow automatically, since @ satisfies a more complicated 
equation than the Laplace equation satisfied by the stream function in the homo- 
geneous fluid.) 

Substitution of these expressions (3.1.8)) (3.1.9)) leads to the following, some- 
what involved, expressions : 

m 

X ((@n)zzt-n2P2($n)t +nPPn) s i n n ~ x  
n=l 

+ (E n=l ($n)zsinnPx) [ m= 5 1 mP((@m)zz-m~rn)C0Smx 1 
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where ($n)a = a$Ja.z, etc. To proceed further, it is necessary to make some 
appropriate assumption about the order of magnitude of the terms $n and pn 
which appear in these equations. The boundary conditions do not impose any 
scale on $ (and indeed the magnitude is dependent on the wave amplitude, about 
which we have made no assumption so far), although p must be of order unity, 
representing the initial density when the disturbance becomes very small. We 
therefore suppose (and find a posteriori that it  is consistent) that $ is small and 
of order a, where this is a parameter which will be defined in terms of the wave 
amplitude and fluid depth. The density, po, is of order unity, and p1 of order a, 
which follows from (3.1.13) below. Now comparison of coefficients of sinnpx or 
cosnpx in (3.1.10), (3.1.11)) leads to a series of equations in the @n and pn. 
Moreover, comparing coefficients for 0 < n < N leads to 2 N +  1 equations for 
$1, $2, . . ., $N and po, pl, . . . , pN; an expansion to order N may be solved in closed 
form. Examination of these equations shows that on the basis of the ordering 
system defined above, $n and pn are of order a2. We are thus left with a sequence 
of equations for $n and pn as functions of time, and x only. The equation at  
zeroth order is simply 

(Poh = 0. (3.1.12) 

Hence to zeroth order po = I I ( x ) ,  the undisturbed fluid density. The equations at  
first order are 

($1)az1-P2($1)t+P1 = 0 (3.1.13) 

Po,t = 0 (3.1.14) 

and (PAL- ( P o l s  P$, = 0. (3.1.15) 

The term (po), which appears in (3.1.15) is expanded to zeroth order only, since 
we have assumed that $l is first order, and so we may replace po by n(z) in this 
equation, and then eliminate p1 from (3.1.13) and (3.1.15) to obtain 

($l)zztt-132($~)tt+1321T’$l = 0, (3.1.1 6) 

where rr’ = d r I / d z .  

The boundary conditions on $l are that 31., = 0 at z = O,n/r. We are seeking a 
solution which is periodic in time. Suppose that, to first order 

$l = Y ( z )  sin d ,  

(Y)zz-p2(1 + II’)+Y = O;Y(O) = Y(n/r) = 0. 

(3.1.17) 

( 3.1.18) 

The solutions of this equation are well known and have been discussed by 
Yih (1960). By implication the Ahorizontal wavelength of the oscillation is 
(2/p) times the width of the tank, W .  We assume that this wavelength, and there- 
fore the integer p, is given; (3.1.18) is then an equation of standard Sturm- 
Liouville type and there exists an infinite sequence of positive eigenvalues 
{l/vz} whose only limit point is + co (Yih 1960). We let {Yn} be the complete set of 
corresponding orthogonal eigenfunctions. These different eigenfunctions corres- 
pond to different modes of the system. We shall restrict our attention to one of 
these which has eignfunction Y, say, and corresponding eignvalue l / a 2  so that 

$1 = aY (2) sin d. 

where 
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From (3.1.13) it follows that 

p1 = - (aprI’/a)Y cos at 

Po = Wz) + 4 1  (4,  and from (3.1.14) 
where fl ( z )  is of zeroth order. 

Now suppose that a fluid particle initially a t  height z and therefore having 
density n(z), is moved by the wave motion to z + r](x, x, t). The density remains 
unchanged so that 

II (2) = p(., + ~ ( x ,  2, t ) ,  t) = PO ( z  + 7, t )  +PI ( z  + 7, t )  cospx (3.1.19) 

expanding to first order. Substituting the known first-order values of po and p1 
and expanding in Taylor series about z we find 

y n ’  + iy2rI” + . . . + a(f1(z) + q f i ( z )  + . . .) 
- (ap/a) (n’ +?I!”+ ...) (Y + 7Y’ -t ...) cos d C O S ~ X  = 0, (3.1.20) 

and hence r] is of order a, and, expanding to order a, we have 

rI’r] = - .[fi (2) - ( p / a )  rI’Y cos at cosp.]. (3.1.21) 

But as we have already remarked the mean value of r] with respect to x is 
zero, and so fl ( z )  = 0 and to first order we have 

I Po = IT, 
p1 = - (aprI’/a) Y cos at, 

$l = aY sin at, 
(3.1.22) 

r ]  = (ap/a) Y cos at cospx.1 

The wave amplitude as a function of z is given by apY(z)/a. As postulated, a is 
associated with the wave amplitude. In  particular cases it may be helpful to 
specify the maximum amplitude of the wave (that of the maximum fluid displace- 
ment in the system), but at  the moment we retain the expressions as they stand, 
and return to (3.1.10) and (3.1.11) to expand to second order. Comparing co- 
efficients we find that 

($1)261 -P2(91)t  + PP1 = 0, (3.1.23) 

( 7 b 2 ) m t  - 4P2($2)L + 2PP2 

= iP r$l(($l)zz-P2$l)z- ~ ~ l ~ z ~ ~ $ l ~ z z - P 2 $ l ~ l ~  (3.1.34) 
Po,t = iP(Pl$l)W (3.1.25) 

(PA - (PoIaPk1 = 0 (3.1.26) 

and (P2)t - 2(Po)z $2 = Mkl (Plh - ($l)#PlI, (3.1.27) 

correct to second order. These equations are solved using the known first-order 
solution (3.1.32). Since $l and p1 are known to be first order, (3.1.25) is an equa- 
tion for the second-order terms which arise in po. This term is already known to 
contain no first-order terms, and so (3.1.23) and (3.1.26), equations identical t o  
(3.1.13) and (3.1.15) found earlier, are satisfied by the first-order density and 
stream function, pl, and Equations (3.1.24) and (3.1.27) express the fact that 
both p2 and $2 are second order, being represented by products of the first-order 
terms p1 and $l. 
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Substituting for $, andp, from (3.1.22) into (3.1.25)’ 
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poJt = - (u2p2/4a) [II’Y2]’sin 2at, 
and integrating, 

po = (a2p2/S(r2) [rIrY2]’ cos 2at  + uy, ( 2 )  + n(2)) (3.1.28) 

wheref, (x) is a function of z of order unity.? On substitution (3.1.24) and (3.1.27) 
become 

( $2)zzt - 4p2($,)$ + 2pp2 = +(a2p3/a2) II”Y2 sin2 a t  (3.1.29) 

and (p2)!- 211’$2 = - (a2p2/40) II”Y2sin 2at. (3.1.30) 

Eliminating (P,)~ from these two equations we have 

($2)ztll - 4p2($2)ll+ 4IIrp2$, = (a2p3/cr) II”Y2 sin 2 d .  (3.1.31) 

We look now for a solution of the form $2 = @ sin 3 d ,  where CD now satisfies 

(3.1.32) 

subject to the boundary conditions CD = 0 at x = 0 and n/ r ,  and define a set 
{q5J of eigenfunctions of the equation #If - 4p2q5 - 4(nrp2 /a2)  q5 = 0 with boundary 
conditions q5 = 0 at z = 0 and n/r ,  and corresponding eigenvalues {l/&}, SO that 

q5” n -4p2# n - (4II’/a;)p2q5% = 0, q5n = 0 at  x = 0, n / ~ .  (3.1.33) 

The set {q5n} is complete and orthogonal in the sense that 

and the infinite sequence of eigenvalues is positive with only limit point +a. 
If now we let 

Z an#n = Y211”/Ilf, 
m 

n= 1 

substitution into (3.1.32) gives 

(3.1.34) 

-f If continuing the expansion to any higher order, we must regard cr as a parameter 
which may also be expanded as a series in powers of a, 

co 

u =  c cL”o,, 
n = O  

with w o  identified as the eigenvalue cr of (3.1.18). The correction, ol, to this eigenvalue is 
determined in the second-order analysis, but is identically zero. In  the expansion to third 
order in the particular case 

discussed below, the variation due to finite wave amplitude is found, but the details of 
solution are omitted. The technique of varying cr is standard and well known in the case 
of surface waves; it is no more complicated here. 

33 Fluid Mech. 32 

rI(2) = 1 - y z  
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provided that a: =t= 4a2 if an $: 0. Failure of the standard theory at  these fre- 
quencies has similarly been found in the analysis of surface standing waves by 
Tadjbakhsh & Keller (1960) and Concus (1962, 1964), although experiments 
have not revealed any extraordinary behaviour at these frequencies. (If we 
write an = a,(2p), the eigenvalue of (3.1.33), then a is one of the set {am(p)} 
and the theory fails when an (3p) = 2am (p) for a given m, and n such that a, $. 0. 
It appears that in this case there will be a resonant interaction between the 
second harmonic of the primary wave and another free mode of oscillation of the 
system). 

In  general, however, a: $. 4a2, and 

(3.1.35) 

Since Can#, is, by definition, convergent, and {I/&} is an infinite sequence of 
positive eigenvalues with only limit point + 00, it  follows that 

03 

X [4/’(~2 - 4g2)1 an #n 
n=1 

is convergent. Clearly other solutions of (3.1.31) may be found, but these corres- 
pond to free waves in the system; our attention is now confined to those second- 
order waves forced by the presence of the first-order wave. 

From (3.1.29) and (3.1.33) we have 

The second-order particle displacement, 7, may now be found using an ex- 
pression similar to (3.1.20), andf, found from the continuity equation. Omitting 
the details of the algebra we find in summary that to second order 

a2p ; 0-: 2a,q5nsin 2atsin Zpx, (3.1.36) $ = uuP sin a t  sinpx + __ 
4 a  n=l a, - 4a 

p = II+---[”~’+Y2rI’’]--rI’Ycosatcospx .2p2 oly, 
8a2 a 

e) cos2at) (3.1.37) 

and 

7 = ~ c o s a t c o s p x + - c o s 2 p x  40-2 YY’+ YY‘+ *=I 5 *]c0s2at]* v; - 4a2 
a { [ 

(3.1.38) 

The distortion of the wave profile from sinusoidal at  any height 2, is given by 
the second-order terms. If 

a t  any given x then the wave profile there will never be completely flat (the 
nearest approach to a flat profile is a t  t = n-/Za). The mean density a t  any level 
is changed in the wave motion. 
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The general theory may easily be extended further to include higher-order 
effects, but the calculations made already allow the estimation of the distortion 
from sinusoidal of the wave profile in given density profiles. A higher-order 
expansion would lead to more accurate estimation of the wave profile,? and to 
an estimation of the effects of finite amplitude on the dispersion relation. We 
now leave the general theory and consider particular cases. 

3.2. Waves in a$uid of density n(z) = 1 -pz,p > 0 

In  this case (3.1.18) becomes 

Y,zz:-p2(1 -p/+)Y = 0, Y(0) = Y(n/r)  = 0, (3.2.1) 

and solutions are 
Y = sinnrz, where n2r2 = p2(p/(r2-  1). (3.2.2) 

(For real values of nr it is necessary that cr2 < p, a consequence of the theorem 
of Groen 1948 b. An arbitrary constant may be added to the expression for 'I!, 
but this may be absorbed in the parameter u.) 

The expression for the frequency, cr, from (3.2.2) is 

(3.2.3) 

since r.  = fi/fi. n is the number of half oscillations of Y in the vertical and p the 
number of half wavelengths in the horizontal between the vertical tank walls. 
The number pair ( p , n )  will be used to indicate the mode of oscillation which 
occurs in the experiments described below. 

Returning to non-dimensional form, the particle displacement 

7 = A sin nrx cospx cos d + &A2nr sin 2nrz( 1 + cos 2 d )  cos 2rx, (3.2.4) 

where A = up/c is a measure of the wave amplitude. 

Then at  t = 0, 
The wave profile is of immediate interest. Suppose for example that n = 1. 

7 = A sin nrz( cospx + 4Ar cos rz cos 2px) 

and so, if 0 < z < n/%, the wave profile is one in which the crest is narrower 
than the trough. It resembles in shape the surface standing wave profile. If, 
however, n/2r < z < n-/r, the trough is narrower than the crest and the wave 
profile resembles an inverted surface standing wave (the analogy with inter- 
facial waves is more direct as may be seen by comparing these results with those 
of $2). At time t = n/2cr, the surface is undisturbed to second order, 7 = 0 
(unlike the interfacial waves, which showed a second harmonic a t  these times 
when one of the two fluids was shallow). These waves, with n = 1, have a vertical 
wavelength of twice the fluid depth. The wave profile for higher values of n may 
be similarly be examined. 

t This is on the assumption, made throughout, that the series expansions, (3.1.8), 
(3.1.9), are convergent. 

33-2 
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The expressions for the stream function, $, and density, p, of the fluid are 

$ = ( A  a / p )  sin nrx sin at sin px 

p = 1 - px + p A  sin nz cos at cospx - &A2pnr sin Znrx (1 + cos 2at). 
and 

If the expansion is carried to third order, the fluid displacement is 

7 = A sin rnx cospx cos a t  + &A2nr sin Snrx( 1 + cos 2at) cos 2px 

+ (cos px sin nrx(3 cos a t  - 2 cos 3at) 
138 

1 + cospx sin 3nrz cos at - ~- cos 3at 3(p - 
lop - 902 

+cos3px(3cosat+cos3at) (5sin3nrz- 7sinnrz) , (3.2.5) 1 
while the third-order correction to the dispersion relation is to make 

nWA2 
= go (1-+ , 

where a: = p2,u/(p2+n2rz), the first-order solution. (The expressions for $ and p 
are given in appendix 3.) 

The effect of finite wave amplitude is thus to decrease the wave frequency, 
irrespective of fluid depth, in contrast to the findings in the case of surface and 
interfacial waves when critical depth to wavelength ratios exist, below which 
the frequency increases with wave amplitude. 

It will be noticed that the coefficients which occur in (3.2.5) are finite, since 
a2 < p for non-zero values of (n/p), and, if nrA is sufficiently small, there is some 
indication that the series is tending to converge. The parameter which must 
be small when we dimensionalize, is A^j where Â  is a wave amplitude measure and 
e is the vertical wave-number of the waves. The fluid displacement is zero at 
time t = n/%. 

If the upper boundary of the fluid is free, then it may easily be shown that, if 
7~ $ pr2, the frequency of an internal mode of oscillation is given by 

0 2  = PP2 
p2 + mzrz[ 1 + 2pr2/n(m2r2 + p 2 ) ]  ’ 

where m is the largest positive integer less than y, a solution of 

(3.2.6) 

The effect of the free surface on the profile of the internal oscillation is negligible 
if, in dimensional units 

P ^ o ( O ) - P ^ o ( A ) f  < 1, 
2nP^o(O) f 

where E is the horizontal wave-number and the vertical wave number. In  the 
experiments this condition will be well satisfied. 
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3.3. Waves in an unbounded Juid density of I I ( x )  = 1 - h tanh az 

The solutions of (3.1.18) corresponding to various modes of the system have been 
discussed in some detail elsewhere (Groen 1948a; Thorpe 1968). The solution for 

Y = sechplaaz, Y for the first mode is 

where 

Substitution into (3.1.37) gives the equation for 7 correct to second order 

7 = A sechplaaz cospx cos at - &Azp cos 2px sech2Piaaz tanhax 

where A = apla. (The solutions q5% are exactly as found in the paper on pro- 
gressive waves by Thorpe (1968, equation (3.3.19)). As in that paper, the solu- 
tions are not valid for very long waves, and do not therefore reduce to the form 
found for interfacial waves in deep water discussed in $ 2 . )  Solutions for higher 
modes may also be found. 

3.4. Experiments: II(z) = 1 - p z , p  > 0 

The experiments were made using the apparatus described in the experiments on 
interfacial standing waves in a two fluid system discussed in $2 .  The same 
apparatus was used to fill the tank as in that experiment. The tank was filled 
layer by layer, each of the same thickness (usually 1 em) and each being denser 
than the preceding layer by a constant amount, the density variation being 
achieved by the addition of brine. A little gentian violet was added to every 
third layer to allow the motions of the lines of constant density to be followed. 
The density difference between each layer, measured by the salinometer cali- 
brated for density, was usually 0.0005 g/c.c. The tank was filled until the fluid 
was level with the tops of the plungers, when there were about forty layers of 
graded density. The fluid was allowed to stand for a few hours before the ex- 
periments began to allow for diffusion; when the experiment was begun it was 
thought that the density gradient in the fluid differed only slightly from a con- 
stant value, a conclusion recently substantiated by the experiments of Mowbray 
(1967), and the situation therefore closely resembled that envisaged in $ 3.2 except 
that the upper surface of the fluid was free and not fixed horizontally. 

The experiments were designed: (a) to examine the sorts of wave motion which 
may occur in a uniformly stratified fluid; (b) to examine the frequency of the 
various modes when the wave amplitude is small and to make a comparison with 
theoretical predictions; ( c )  to examine the wave profiles, particularly a t  finite 
amplitudes; ( d )  to find what, if any, effects occur when the wave amplitude 
becomes very large. 

In  all the experiments, the density difference between the top and bottom of 
the fluid was small compared with a mean density, and therefore to a first 
approximation the main body of the fluid should oscillate as if there were a 
fixed boundary at  the free surface, as explained above. We therefore compare the 
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observations with the theoretical results for a fluid bounded above at  the ex- 
perimental free surface. 

With plungers working in opposition, two different modes could be easily 
generated. The appearance of these is shown in figure 21 and 22, plate 8. The 
first corresponds to mode (2,l) and the second to (2,3). Higher modes were not 

8 1 0 
0 

z 

FIGURE 23. The variation of the total amplitude of particle displacements, Ar, with height 
above the bottom of the tank, z, measured in centimeters, from figure 2 1 .  The full line is a 
sine curve, proportional to sin ( m / H ) .  

Obsorved 
times of one 
oscillation 

Mode (s) 
(291) 9.92, 9.91, 9.96, 

9.87, 9.94, 9.905 

(293) 14.99, 14.93, 14.86 
14.9, 15.15, 15.07 

Difference 
between 

0 bserved observation 
mean Predicted and 
period period prediction 

(9) (8) (%) 

9.92 9.84 0.81 

14.98 14.92 0.40 

TABLE 1. Comparison of predicted and observed standing wave frequencies. Observed 
times of one oscillation are deduced from timing 10 free oscillations. The predicted periods 
are based on (3.2.5) 

examined. The (2,2) mode could not be generated with the plungers moving in 
opposition. The frequencies of these waves were found by timing about 10 free 
oscillations with a stop watch. The results are shown in table 1. The predictions 
are based on the estimated frequencies using (3.2.6) for the frequency of waves 
with a free upper surface. The comparison of theory and experiment is satis- 
factory. The effects of fluid viscosity on the frequency are considered later and 
found to be negligible. 

With the plungers working in phase, the ( 1 , l )  mode could be excited. The 
frequency of waves in this mode was found from two sets of observations to be 
0.514 rad/s as compared with the predicted 0.525 rad/s. 
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Measurements made from the wave profiles of the (2,l) mode indicate that the 
variation of particle displacement with height above the bottom of the tank is 
approximately sinusoidal (figure 23). The wave profile (7 vsx)  is not, however, we11 
described by the predictions of the second-order theory, although the wave 
amplitude was such that second order effects should have been noticeable. It 
appears that the wave profiles a t  large amplitude were markedly distorted by 
two effects; (a )  the presence of other modes of the system excited by the plunger 
motion, and ( b )  the presence of rays of internal waves of small wavelength pro- 
pagating away from the bottom of the two plungers and generated as a result of 
the vertical fluid motion past the slight depressions in the tank walls at  the 
bottoms of the plungers. These effects are discussed below. The effects were 
(accidentally) avoided in another experiment, one on progressive waves in a 
stratified fluid (Thorpe 1968). In  this experiment internal waves of the first 
(vertical) mode in a fluid of constant density gradient were generated by a wave 
maker at  one end of a long tank. The waves arriving at the other vertical end of 
the tank were reflected and standing waves resulted nearby. These are shown in 
figure 26, plate 10. Although no quantitative comparison with theory is possible, 
these waves are seen to have the predicted form. 

Large-amplitude effects 

As the amplitude of the plunger motion was increased, the maximum amplitude 
which might be obtained by the wave motion in any mode increased. No detailed 
investigation of this qualitative observation was made, since it was not possible 
to measure the vertical motion of the diffuse layers of dye accurately,t but in the 
(2,l) mode with a plunger total amplitude of 0.65 em, the maximum total wave 
amplitude which could be generated was about 3.8 em. 

The damping of the free wave motion was not very great. In  the mode (2,l) 
during the time of ten free oscillations measured as 99.2 s, the total wave ampli- 
tude was observed to decrease from about 3.5 ern to 2.5 em, corresponding to 
a damping coefficient, q, of 3.36 x s-l (where the amplitude a t  time 
t ,  A(t)  = A(0)  e-"t). In  appendix 4 we estimate the viscous dissipation of energy 
in the fluid. The damping coefficient found theoretically which corresponds 
to the conditions above, is q = 5.3 x 10-3s-1, which is a little larger than that 
observed; the measurements of amplitude, however, are only approximate. 

When the total plunger amplitude was increased to 1.1 em, and the frequency 
set near that of free oscillation in the (2,l) mode (the plunger frequency was 
0.628 rad/s-l), the wave amplitude gradually increased during the first 10 
oscillations and by the 15th oscillation some irregularity in the wave motion was 
observed. The shape of the wave profile during subsequent oscillations is shown 
in the sequence of photographs figure 24, plate 9. Serious irregularities dominated 
the wave profile, although there remained the dominating primary oscillation of 
the plunger frequency. The photographs shown were taken in every other cycle 
when the upward fluid displacement at  the centre of the tank reached its maxi- 

t Other methods of measurement might have been used, but the main focus of attention 
was on free wave oscillation and the effects which occurred at  large forced oscillation. 
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mum value. Mixing and overturning were seen to occur in the regions where the 
irregularities were greatest (figure 24f, g, h) although after the motion of the 
plungers was stopped, the plungers having made a total of 33 oscillations, the 
motion of the fluid died out and the bands of dye remained still clearly defined, 
if a little more diffuse. If the plunger motion was arrested as soon as any irregu- 
larity was observed, then the sequence of breaking continued to manifest itself 
in just the same way as when the plunger motions were continued. It is probable 
that some of the irregularities observed occur as the result of waves which do not 
satisfy exactly the frequency equation. Quite a large response may be obtained 
when the plunger frequency is a few per cent away from the natural wave 
frequency, and it seemed possible that the irregularities in the wave profile were 

Vertical modal number, .n 

1 2 3 4 5 

1 0.525 0.344 0.246 0.190 0.154 

2 0.638 0.525 0.421 0.344 0.288 

3 0.672 0.603 0.525 0.452 0.392 

4 0.683 0.638 0.583 0.525 0.469 

5 0.690 0.660 0.618 0.571 0.525 E 
TABLE 2. The theoretical angular frequency, c, in rad/s for 

different model numbers ( p ,  n) possible in the experiments 

associated with the incidental generation of modes with frequency near the 
plunger frequency in the experiment. Table 2 shows the frequency of various 
modes which correspond to the experimental conditions (density gradient 
5 x g/c.c./cm, fluid depth 40 em, width 35.5 em). The frequency of the 
plungers, during the period in which the sequence of photographs (figure 24) 
was taken, was 0.628 rad/s-l, slightly less than the natural calculated frequency 
of the waves in the (2 , l )  mode at small amplitude. This frequence is of course 
the same as that of the (4,2) mode, but we expect from earlier observations that 
only waves with an odd vertical and an even horizontal modal number will be 
excited by plungers working in opposition, and in fact, the (4,2) mode was not 
observed. A brief examination of table 2 suggests that the most probable mode 
which might be generated a t  the same time as the ( 2 , l )  mode by plunger oscilla- 
tion slightly less than 0.638 rad/s-l, is the (4,3) mode. Examination of the 
photographs strongly suggests the existence of this wave mode (see, for example, 
figure 24h), and the irregularities seen in the photographs are partly the result 
of the presence of two modes, the ( 2 , l )  and the (4,3). 

The small-scale irregularities appear to originate from the bottom of the 
plungers and have a form very similar to that associated with rays of internal 
waves (see, for another example, Thorpe 1968). In  an undisturbed fluid a ray of 
internal waves of frequency g in fluid of constant stability frequency N would 
propagate at  an angle a = sin-l ( w / N )  to the horizontal, although the propagation 
path in the presence of standing waves would be disturbed, the wave belonging 
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to the rays being convected with the standing wave motion (for further discus- 
sion see Bretherton 1966). Using the facts that CT = Nk(k2+n2)-* (dimensional 
variables) and for the ( 2 , l )  mode the horizontal and vertical wave-numbers 
(k, n) of the primary standing wave are (27~1 W ,  2n/2H) for the tank of width W 
and height H ,  it is easilyshown that tan a = 2H/ W .  Themeanpathsof the internal 
wave rays are therefore as shown in figure 25. It is thought that the small scale 
irregularities and regions of local overturning are the result of the distortion of 
the internal wave rays by the standing wave motion. It seem unlikely that 
instability might be caused by local shears generated in the wave motion, as the 
estimated minimum local Richardson number was about 60 and the motion 
should therefore be very stable. 

FIGURE 25. The paths of internal wave rays originating from the bottom of the plungers. 
The curved arrows indicate the direction of the phase velocity, full arrows the group 
velocity. Cusped reflexion at  the top and bottom boundaries, where diffusion destroys 
the density gradient, is expected although not shown in the sketch. 

More exhaustive experiments on standing internal waves in a fluid of constant 
density gradient have been made by Dr K.-H. Keunecke of the Ozeanographische 
Forschungsanstalt der Bundeswehr, Kiel, and it is hoped that these may be 
published shortly. Full agreement with the present results has been found. 

This investigation of standing internal waves is part of a general study of 
breaking internal waves, and was made in the Department of Applied Mathe- 
matics and Theoretical Physics at  Cambridge. The apparatus was made at  the 
University Engineering Laboratories and I am grateful for the advice of Mr 
Barker during the construction, and for the use of the heat sealing apparatus 
at the Low Temperature Research Station in Cambridge used in making the 
polythene bags. 

Appendix 1 

surface, we find the interfacial wave profile 
For pz -p l  not much less than p2, and for a two fluid model with a fixed upper 

(A 1.1) 5 = a sin at cos kx + a21c(zl + z2 cos 2 4 ,  
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and (A 1.2) 

Ifp, = 0,  this reduces to the solution for surface standing waves of Tadjbakesh 

For two fluids with a free upper surface, the elevation of the interface, 6, is 
& Keller. 

defined as in (A 1.1)  but where 

(A 1 .3 )  

where p = rr2/gk, r = 1 -PIT,, A = 3p(1  - p 2 )  ( 1  -T i ) /T : r2 ,  

B = [T,+T,-~(l+T1T2)l/rT,T,, 

c = 2(p,-p,) ( i - p )  + P  [ P2 ---____ 

The corresponding equation of the free surface is 

7 = a! sin rrt cos kx + a2k(N, +N2 cos 2rrt) cos 2kx, 
where 

1 
and N2 = - - ( 3p2 - 1 + 2Er2 sinh2 kh,). 

1 +p2 

r sinh kh,’ 8P 8P 
N, = - a = -  

These results reduce to those of Tadjbakesh & Keller when the appropriate 
approximations are made, and the equation of the interface reduces t o  Hunt’s 
(1961)  solution when kh,, kh,, are large. 

If the internal wave mode is excited and (p2 -p l ) /p2  is small, the surface wave 
disturbance tends to zero and the solution for the interface, c, tends to the 
solution (A 1.2)  for a fixed boundary. 

If the fluid below the interface is deep, so that kh, 1 and T2 = 1 ,  it is easy to 
find the effect of non-homogenity of density on the dispersion relation of the 
surface waves. For the surface mode, it is found that 

a2k2 p1 ( 1  + T,) + (p2 - p,) ( 1  - T,) e-2kh1 
c2 = ” k [ ’ - , (  2 ( p l T 1 + p 2 ) - p 2 ( 1 + T 1 )  



On standing internal gravity waves of Jinite amplitude 523 

correct to third order, where a is the first-order wave amplitude. This expression 
reduces to (T, = gk[l -a2kz/4] if pz = pl, the result shown by Penney & Price 
for deep water standing waves. If pz = p1 (1 f p ) ,  and p < 1, we find 

and the effect of a small density difference is to increase the surface wave fre- 
quency. 

Appendix 2 
1. The effect of a non-sharp interface 

In order to estimate the change in frequency of interfacial waves due to some 
mixing at the interface, a three-layer model was considered in which the densities, 
p1 and p,, of the upper and lower fluids were constant, whilst the density of the 
intermediate region of thickness 2& wasp e-pz ( z  being taken vertically upwards), 
and equal to p1 at z = d, and pz at z = -d. For simplicity it was assumed that 
the upper fluid was deep and the lower of depth h,. This system has infinitely 
many modes of vibration, but it is possible to select the primary mode which 
reduces to the mode in a two fluid system when the thickness of the intermediate 
layer tends to zero. This model will not accurately resemble the experimental 
situations, but should indicate the effect of the intermediate layer fairly well. 

If the density difference between the upper and lower fluids is small, and if kd 
is small, where k is the wave-number of the standing oscillation, then the fre- 
quency, (T, is given by 

= c$[l-$kd(2tanhkh2- l)] (A 2.1) 

approximately, where is the frequency of interfacial waves in the two fluid 
system. 

Hence the effect of the transition layer is to decrease the wave frequency if 
both fluids are deep, and to increase the frequency if the lower fluid is sufficiently 
shallow (h, < (ktanhi)-l). 

A decrease in frequency with increase in thickness of the transition layer, was 
observed in the experiments in deep water. A transition layer of thickness about 
2 em (based on a calculation using this model) would be necessary to  produce the 
6 %  variation in observed frequencies from those calculated on the basis of a 
two fluid model. 

2. The effect of viscosity 
(a )  A t  the Jluid interface 

Harrison (1908) showed that the effect of viscosity on waves at the interface 
between two deep fluids is to decrease the frequency, (T, from the inviscid theore- 
tical frequency r0, by an amount 

k fTOU 4 
A(T = - (-) 

2 2  
(A 2.2) 
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If we take cro = 0.6 rad/s, k = 0.177 cm-l, and the kinematic viscosity (taken 
a t  the same value in each fluid), v, = 0.01 em2 s-l, to represent typical scales 
used in the experiments, then the effect of viscosity is to decrease the frequency 
by about 0.8 %. This is based on the assumption that no mixing occurs and that 
the interface is sharp. A thin transition region may well decrease this estimate 
substantially. 

The effect of viscosity is also to decrease the amplitude, A(t ) ,  of the wave, so 

that A(t)  = A(0)  e-Qf, where q = ACT. ( A  2.3) 

The damping coefficient, q, is increased when the depth of the upper fluid is 
decreased. 

( b )  Viscosity at the boundaries 

Using the theory given in Lamb (1932, $3 329,345),  it is easy to compute the rate 
of energy dissipation from the wave motion by viscosity at  the walls of the tank. 

If W is the width and B the breadth of the tank, and if the upper fluid is deep 
and the lower of depth h,, then the rate of loss of energy in the tank due to vis- 
cosity at  the walls and bottom is 

( A  2.4) 

when the wave amplitude is A and the coefficient of viscosity v,  is equal in the 
two fluids. Hence the effect of a shallow lower layer is to increase the rate of loss 
of energy in the wave motions. 

Now the energy density per unit horizontal area of the interfacial standing 

wave motion is &42g(P2-P1). ( A  2.5) 

Hence if E* is the total energy of the standing wave motion in the tank, when 
both fluids are deep and the viscous effects at the interface are neglected, by 
combining ( A  2.4), (A 2.5) we have 

E*(t) = E*(O) exp - (2m)4- (B&W) t )  . 1 
The equation including the effect of viscosity a t  the interface is 

E * ( t )  = E*(O) exp { - ( +cr0v) [ 2 ( B  + W ) / B  W + k] t}  (A 2.6) 

from (A 2.3). 
For the wave with modal number n, k = nn/w, and the ratio of dissipation at 

the walls to that at  the (sharp) interface is 2 ( B +  W)/nnB. (The corresponding 
damping coefficient is 

and if cr = 0.9 rsd s-l, v = 0.01 em2 s-l, B = 20.3 em, W = 35.5 cm, k = 0.177 cm-l, 
then q = 1.2 x spl. This agrees well with the estimate from observations 
mentioned above.) Equation ( A  2.6) seems a t  first sight to lead to a contradiction 
with the observed response curves, figure 12. The rate of dissipation of energy is 

q = [(B+ W ) / B W + k / 2 ]  (CTv/2)4, 

[2(B+ W ) / B W + k ]  (a0v/2)4E*(t), 

or [2(B + W ) / B W +  k / 2 ]  A2BW(pl +p2)  (cr;v/2)*/4k7 ( A  2.7) 

since E*(t) = W2g(p2-p1)BW and d = g4P,-P,)/(P,+P,) 
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and thus the loss of energy per cycle increases with frequency (or density diff- 
erence). We have observed that the response curves figure 12, show an increase in 
the resonant amplitude with frequency for fixed plunger amplitude. This apparent 
contradiction can only be resolved if the plungers can put more energy into the 
wave motion a t  one frequency than they can at another lower frequency (or if 
the waves receive more energy from the plungers as the density difference 
between the fluids increases). 

pvds, where p is the fluid pressure at  

the plunger, v is the plunger velocity, and the integral is taken over the area of 
the plunger, S. If we assume that exactly at  resonance (that is when the plunger 
frequency is exactly the same as the natural frequency of the wave a t  the ampli- 
tude at  which it is oscillating) at  the crest of a response curve, there is a phase 
difference, E ,  between the wave motion and the plunger motion, then the applica- 
tion of first-order wave theory leads to the result that the mean rate of working 
of one plunger on the fluid is approximately 

aaipl AB sin s/2k2. 

Here we assume that only the upper fluid of density p1 is in contact with the 
plunger, and that the plunger amplitude is a. Equating the energy input rate 
from two plungers to the rate of viscous dissipation at  the boundaries, when 
both fluids are deep and the density difference between the fluids is small, we 

A = a(2c7/vk2)4 sin EB/( W +  B). ( A  2.8) 
find 

If we substitute the values taken by the quantities k, B and W ,  in the experiment 
and take v = 0.01 em2 sec-l, we obtain 

A = 50.8ad sin E ,  (A 2.9) 

where A ,  a and a are measured in c.g.s. units. 
A plot of the values of the resonant wave amplitudes, A ,  against plunger 

amplitude, a, at fixed frequency, CT = 0-828 s-l (from figure 8) is approximately a 
straight line of slope 3.33, giving a value of sine = 0.0827, and confirming the 
predicted relation between A and a. Moreover, a plot of A against d for fixed 
plunger amplitude, a = 0.175 em, values being taken from figure 12, lies approxi- 
mately on a straight Iine of slope 0.148. This confirms the prediction of (A 2.9) 
and leads to another estimate of sin E = 0.0833, in remarkably good agreement 
with the first. The predicted phase angle, E ,  between the plungers and the wave 
motion is thus about 4' 48', which would not be detected in the experiments. 

The rate of working of a plunger is Is 

Appendix 3 
For a linear density gradient, to third order 

ACT 
r 

@ = - sin nx sin at sin rx + 

sin rx, 1 sin 3nx sin 3ut sin nz sin 3at - 
+ 10p-9a2 P 
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and 
p = 1 - pz  + p A  sin nz  cos at cos rx - QA2,un sin 2nz( 1 + cos 2 d )  

3(r2+ 9n2) 
sin 3nz cos at + -~ sin 3nz cos 30-t 

lop - 9a2 

3(r2 + n2) sin nz cos 3at cos rx. I - 
P 

Appendix 4. Viscous effects, continuous density 
1. Damping due to viscosity in the body of the fluid 

symbol (*) but retaining dimensional quantities, we obtain 
If viscous terms are included in the linearized vorticity equation, dropping the 

aP ( A  4 .1 )  
a 

Po (0) V2$ = gax + VPO (O)V2(V29% 

where v is the kinematic viscosity, which we suppose to be constant. The lineari- 
sed equation of continuity is 

( A  4 .2 )  

The equation which results from the elimination of p from ( A  4 .1)  and ( A  4 .2 ) ,  
and the substitution po = po (0) ( 1  -pz) is 

A solution is 
nm prrx 
H W  

$ = a sin __ sin ~ est 

(where H ,  W are the fluid height and width respectively), if 

(A 4.3) 

( A  4 .4 )  

(This does not satisfy the no-slip conditions a t  the walls; viscous damping at  the 
walls is considered below.) 

Hence s = iao(l+E),  

where 

the frequency of inviscid waves, and 

vrra ( n2 p 2 )  [. vrr2 

( n2 p a ) ]  
€ 5 -  -+- z+- -+- 

2oi, Ha W2 4a0 H 2  W2 

if !T($+$) < 1. 
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The effect of viscosity is to introduce a dissipation coeficient 

(A 4.5) 

and to increase the frequency, cro, by ( ~ ~ ~ r ' / 8 ( ~ 0 )  (n2/H2 +p'/ W2) ,  a negligible 
amount in the experiments. 

2. Damping due to viscosity at the boundaries of the fluid 
Using the method (Lamb 1932, @329, 345) discussed by Schooley & Stewart 

(1963), the total mean rate of loss o f  energy due to viscosity a t  the fluid boun- 
daries in the experiment is 

dE n W 2  1 
dt [A ( p H )  (D';)]' (A4*6) 

-- = A'CT~~, (&'V)~($WHD) -+-+ __ 

where A is the wave amplitude, cr the frequency and H ,  W and D the fluid 
depth, width and breadth respectively. 

The energy of standing internal waves in the tank is 

E = QpoDHWA2cr2[1 + (nW/pH)'] 

t o  second order, and so 

1 dE 

The energy is proportional t o  the square of the wave amplitude and so 

A@) = A101 exp ( - 41t), 
where the dissipation coefficient 

q1 = ( ( ~ c r ' ~ ) ~ [ ~ + 5 + ~ ~ ) ' ( ~ + ~ ) ] } / [ 1 + ~ ~ ~ ] .  (A4.7)  

In  the experiments H = 40 em, W = 35.5 em and D = 20.3 em, and q1 is 
much greater than qo, (A 4.5). 
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( b )  

FIGURE 2. Interfacial waves botweon deep fluids. Mode ?a = 2. h, = 25.5 em. hla = 19.0 cm. 
p2-p1 = 9.0 :: lO-3g/c.c., (a )  maximum upward displacement; ( b )  maximum downward 
displacement. 

THORPE (Facing p .  5%) 
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( c )  

FIGURE 4. Interfacial naves in shallow lower fluid. n = 2 ,  h ,  = 27.5 em, h ,  = 2.7 em, 
p2-p1 = 19.8 x IO-~g/c.c. 1Vrinklos may be seen in the polythenc in the corners of tho 
tank, (a )  maximum upward displacement; ( b )  minimum displacement ; ( c )  maximum 
downward displacement. 

TH ORPE 
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(c )  

FIGURE 6. Interfacial waves in shallow upper Auid. n = 2, h, = 2.7 em, h, = 23.0 cm, 
p2-p1 = 15.5 x lO-3g/c.c., (a )  maximum downward displacement; ( b )  minimum displace- 
ment; (c) maximum upward displacement. 

THORPE 
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(c) 

For legend see plate 5.  

Plate 4 
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(f) 
FIGURE 13. The development of instability at  the interfacial wave node. Half the wave 
profile in mode ?z = 2 is shown. h, = 25.5 cm, h,  = 19.0 cm, p2-p1 = 9 . 0 ~  10-3g/c.c. 
Total plunger amplitude = 0.9 cm. The photographs were taken at intervals of two or 
three oscillations. 
THORPE 
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( b )  

FIGURE 17. Layer of dye of intermediate density ( a )  before and (b )  during the occurrence 
of irregularities at  the wave node. Half the wave profile in mode n = 2 is shown. 

THORPE 



Journal of Fluid Mechanics, Yol. 32, part 3 Plate 7 

( b )  

FIGURE 20. Streak patterns seen in a layer of coloured fluid at  the interface between two 
fluids of different densities, looking upwards from below the level of the layer, when a 
standing wave of mode n = 2 is excited by the plunger motion. The side walls of the tank 
are seen in perspective. ( a )  70th oscillation of the plungers, ( b )  131st oscillation. 

THORPE 
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FIGURE 21. Standing witvcs a t  maxirnum displacements in a fluid of linear density gradient 
in free oscillation. The waves are made visible by the addition of gentian violet dye to thc 
layers during the filling. Mode (2 , l ) ;  dpo/dz = 5 x 10-4g/c.c./crn; H = 40cm. 

FIGI~RE 22. The mode (2,3) in free oscillation a t  times separated by half a wave period 
and at maximum displacement. Density gradient and depth as in 21. 
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FIGURE 24. Sequence of photographs separated at time intervals of two oscillations showing 
the development of sinall scale irregularities in inodo (2 , l )  with constant, dcnsity gradient. 
Plungers moving in opposition with total amplitudes of 1 .1  cin and frequoncies of 0,628 
rad/s. 
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k--30cm -4 
FIGURE 26. Standing internal waves of the first vertical mode observed after reflexion of it 

progressive wave at  a vertical wall. The density gradient in the fluid is constant, 
1.00 x 10-3g/c.c./cm. The fluid depth is 21.5 cm and the wave frcqucncy 0.711 rad/s. 
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